

Roadmap to Plone 6 and beyond
Plone 6 Roadmap

Philip Bauer, Jens Klein, Timo Stollenwerk

December 2020

Preface 3

Previous Roadmaps 3
Status-quo 3
Challenges and Solutions 3

Plone 6 Roadmap 4
Volto Frontend / Pastanaga UI 4
Modernize Plone default theme 4
Folderish Content / Page 4
Using Dexterity for Plone Site 5
Drop Support for Python 2 5
Archetypes End of Life 5
Remove portal_quickInstaller 5
Use Zope 5 in Plone 6 5
Mockup and resource registry redone 5
Rethink the UnifiedInstaller 6
Release Schedule for Plone 6.0 6

Long-term Roadmap 6

Preface

Previous Roadmaps
The result of community discussions were set down in past ​roadmap-documents​.

Status-quo
The existing Plone platform is mature, very secure, flexible, and extensible. It offers a good
user experience and focuses on accessibility.

With Plone 5.2 it now supports Python 3.8, runs on WSGI, and provides a full REST API.
This ensures Plone has a stable and feature-rich backend for the foreseeable future. Plone
is also positioned as a powerful Headless-CMS-backend for all kinds of
frontend-technologies.

It allows you to build a wide range of sites for very different audiences, from very simple sites
managed by a small team or a single person with no technical background, to large sites
supporting complex business processes and involving a lot of custom features.

Plone offers specific features (security, complex workflows, sophisticated permissions, high
pluggability) which make it a better solution compared to its competitors in many cases.

Challenges and Solutions
In the past years the Plone community has identified a set of challenges and tasks.
Put simply the two main tasks were a) modernizing the existing frontend for long term
support and b) providing a new, modern frontend with improved usability.

The planned Plone 6 release will ship with a modernized server-side rendered frontend - as
we know it, but tidied up and ready for future long term maintenance.

The rising importance of mobile devices and the pursuit to improve user experience and
loading times of modern websites and applications led to significant innovation in web
technology in recent years. JavaScript technology became one of the main drivers of
innovation in web technology. Open source frameworks like React offer a superior user
experience and speed together with rich features, well maintained code, and a large
developer community.

To stay at the front of these web-development trends Plone 6 will ship with a new
React-based frontend - called Volto - that provides a superior user experience and speed on
top of a modern and well maintained JavaScript-framework together with the maturity,
reliability, and security of the Python-based Plone backend.

https://plone.org/roadmap/roadmap

Plone 6 Roadmap
The will be three major changes in Plone 6:

● Plone 6 will ship with Volto, a new ReactJS-based frontend for Plone
implemented on top of the plone.restapi. This combines the stability,
maturity, and security of the Plone backend with a modern, mature,
user-friendly and well maintained frontend.

● The “core” Barceloneta-based frontend will be modernized using
Bootstrap 5, with cleaned up markup and CSS.

● Plone 6 will run on Python 3 only, fading out compatibility code to
Python 2..

Volto Frontend / Pastanaga UI
Plone 6 will ship with Volto as default frontend. It implements the new Pastanga UI in React.

PLIP: ​https://github.com/plone/Products.CMFPlone/issues/2703
Status: PLIP has been accepted by the Plone Framework Team. Volto has frequent releases
and is used in production.

Modernize Plone default theme
The server-side rendered frontend (barceloneta) is rewritten based on bootstrap 4 and
cleaned up a lot. Based on this you can implement custom themes.

PLIP: ​https://github.com/plone/Products.CMFPlone/issues/3061
Related: ​https://github.com/plone/Products.CMFPlone/issues/2967
Status: PLIP has been accepted by the Plone Framework Team, implementation is active
and progressed far.

Folderish Content / Page
We plan to simplify the Plone User Experience by getting rid of the default_page in Plone 6
for Volto.

PLIP: not yet (follow-up the old PLIP #20144)
Status: Needs discussion. No PLIP written yet.

https://github.com/plone/Products.CMFPlone/issues/2703
https://github.com/plone/Products.CMFPlone/issues/3061
https://github.com/plone/Products.CMFPlone/issues/2967

Using Dexterity for Plone Site
In order to be able to move to folderish content types, we need the Plone site root to
implement the Dexterity base class. Otherwise we would not be able to display a front page
in Plone.
PLIP: ​https://github.com/plone/Products.CMFPlone/issues/2775
Status: PLIP has been accepted. Implementation is finished and needs to be reviewed.

Drop Support for Python 2
Python 2 has been declared as deprecated with Plone 5.2. Python 3 is the default Python
version. We do not support Python 2 in Plone 6.

PLIP: ​https://github.com/plone/Products.CMFPlone/issues/2812
Status: PLIP has been accepted by the Plone Framework Team

Archetypes End of Life
Archetypes has been declared as deprecated with Plone 5.2 and will not be supported in
Plone 6. Migrations from Archetypes to Dexterity can still be done in 5.2 (in-place) or
leveraging the RestAPI.

PLIP: ​https://github.com/plone/Products.CMFPlone/issues/2775
Status: Done.

Remove portal_quickInstaller
PLIP: ​https://github.com/plone/Products.CMFPlone/issues/1775
Status: PLIP is implemented and reviewed

Use Zope 5 in Plone 6
Zope 5 is mostly feature-equivalent to Zope 4 and no longer supports Python 3.
PLIP: ​https://github.com/plone/Products.CMFPlone/issues/3058
Status: PLIP has has been accepted by the Plone Framework Team

Mockup and resource registry redone
Mockup and dependencies goes ES6
Drop through-the-web compilation via RequireJS and LESS.
Resource Registry: Bundle registration is kept but resources will be removed as there is no
need for them anymore.
PLIP: ​https://github.com/plone/Products.CMFPlone/issues/3211
Status: PLIP has has been accepted by the Plone Framework Team, work in progress.

https://github.com/plone/Products.CMFPlone/issues/2775
https://github.com/plone/Products.CMFPlone/issues/2812
https://github.com/plone/Products.CMFPlone/issues/2775
https://github.com/plone/Products.CMFPlone/issues/1775
https://github.com/plone/Products.CMFPlone/issues/3058
https://github.com/plone/Products.CMFPlone/issues/3211

Rethink the UnifiedInstaller
Combine Plone Core and Plone Volto setup in one installer.
Status: Installer Team is discussing different concepts.

Release Schedule for Plone 6.0
The old schedule was to ​have a final Plone release before the Plone Conference. This
schedule was upended by the corona-virus. At the Plone-conference 2020 (online) the
community needs to decide on a new schedule.
The main blocker is that the two “big” PLIPs (“Volto Frontend” and “Modernize Plone default
theme”) need to be merged and production-ready.

Long-term Roadmap
A long-term roadmap has not been planned yet. Here are a few aspects that have been
discussed so far:

● We need to focus on training and on-boarding the community for Volto. Every
Plone-developer needs to be able to create, customize and reuse react components.
It would be great for the acceptance of these technologies if there were good
examples of how to include react-components in the current frontend.

● Simplify the stack for new developers. The documentation has improved a lot in the
last few years but there is still a need for more condensed and accessible
documentation for junior developers that needs to focus on the core-aspects of
modern Plone-Development.

● As a very long-term future switch we can think about removing the Barceloneta
frontend and all browser views that render page-templates from the code. This will
only be possible after a large part of the Plone community moved to Volto and Volto
can provide a comparable ecosystem of add-ons.

